
Demonstration-Guided Deep Reinforcement Learning of Control
Policies for Dexterous Human-Robot Interaction

Sammy Christen1, Stefan Stevšić1, Otmar Hilliges1

Abstract— In this paper, we propose a method for training
control policies for human-robot interactions such as hand-
shakes or hand claps via Deep Reinforcement Learning. The
policy controls a humanoid Shadow Dexterous Hand, attached
to a robot arm. We propose a parameterizable multi-objective
reward function that allows learning of a variety of interactions
without changing the reward structure. The parameters of the
reward function are estimated directly from motion capture
data of human-human interactions in order to produce policies
that are perceived as being natural and human-like by ob-
servers. We evaluate our method on three significantly different
hand interactions: handshake, hand clap and finger touch. We
provide detailed analysis of the proposed reward function and
the resulting policies and conduct a large-scale user study,
indicating that our policy produces natural looking motions.

I. INTRODUCTION

Dexterous humanoid hands, such as the Shadow Dexterous
Hand [1], are becoming very sophisticated. Improvements
in mechatronics have enabled very compact systems that
have more than twenty degrees of freedom (DoF). However,
controller design remains very challenging and has been
shown to be a very complex problem [2], [3]. Recently,
model-free deep reinforcement learning (DRL) algorithms
have been applied to the control of humanoid hands, albeit
on relatively simple tasks such as grasping or door opening
[2] and in simulation only. In [4], a controller trained in
simulation has been transferred to a real humanoid hand.
This opens up the door to learn policies for natural physical
human-robot interactions. In particular, we are interested in
learning a control policy for diverse hand interactions, such
as handshakes or hand claps. The handshake is the most
common greeting gesture throughout the world, therefore it
has received a lot of attention in the robotics community
[5], [6], [7], [8], [9]. In this paper, we present a method for
training a control policy for human-robot hand interactions,
using data from human demonstrations in combination with
deep reinforcement learning. We test our method on the
simulated model of the Shadow Dexterous Hand.

To train a control policy using a DRL algorithm, one of
the main issues is the definition of a reward function. For
simple tasks, like grasping or pick and place tasks, the goal
is obvious and the reward can be easily shaped. For our task,
however, it is not obvious how to shape a reward function.

1AIT Lab, Department of Computer Science, ETH Zurich, 8092
Zurich, Switzerland sammy.christen | stefan.stevsic |
otmar.hilliges @inf.ethz.ch

This work was supported in parts by the Swiss National Science Foun-
dation (UFO 200021L 153644). We thank the NVIDIA Corporation for the
donation of GPU servers used in this work.

Fig. 1. Approach overview. The proposed multi-objective reward
function and extracted parameters from human interaction data are
used to train a human-robot interaction control policy via DRL.

The reward needs to result in motions that are perceived as
natural, the hand needs to reach a desired contact profile
and precise position, while dealing with complex contact
dynamics. To produce natural looking motions of animated
characters in [10], the reward is based on tracking position
and angle references from motion capture data. However, the
authors only consider motions in open space and hence their
reward function cannot be transfered to our task. Thus, we
investigate important terms to construct a reward function
and compare the influence of different reward terms in an
ablation study. To enable generalization to different hand
interactions, we define a parametrized reward function. We
extract most of the reward function parameters from motion
capture data, leading to only six parameters that are relatively
easy to adjust. One could argue that the policy could be
learned directly from data via Inverse Reinforcement Learn-
ing (IRL). However, state-of-the-art IRL methods [11], [12]
have not been applied to tasks that require precise positioning
or challenging contact dynamics. Furthermore, these methods
can be unstable when applied to motion capture data [12].
To ensure training convergence, we propose a specialized
training method. Standard DRL algorithms work out of the
box on benchmark problems [13], but for more complex
problems additional training details, such as randomization
or early stopping are important [10], [14], [2]. We propose
a training method which works in combination with DDPG,
resulting in stable convergence properties.

This work presents a method for learning control policies
for dexterous human-robot interaction. More specifically,
we contribute the following: (i) A multi-objective reward
function for DRL algorithms. We show how reward func-

tion parameters are extracted from motion capture data and
provide detailed analysis of how different parts of the reward
influence the resulting control policy. (ii) A training method
which works in combination with standard DRL algorithms.
(iii) A dataset of human hand interactions. (iv) A large-scale
user study showing that adding imitation reward to the policy
results in motions that are perceived as more natural.

II. RELATED WORK

A. Human Hand Interaction

Different aspects of the human-robot handshake problem
were investigated in the robotics community, e.g., force prop-
erties of a human handshake [5], the possibility to recognize
personality and gender from a handshake [6], or the design
of a compliant controller for handshakes [7]. Previous work
mostly focuses on the handshake properties after the contact
phase. However, producing a handshake movement is equally
important [8], [9]. When humans establish a handshake, one
person requests the handshake by holding out one hand,
while the other person responds by grabbing the hand [9].
Based on this observation, [9] tries to model the appropriate
time to request a handshake.

To achieve a handshake with humanoid hands, usually the
robot requests the handshake and closes the fingers when the
human hand is in contact [7]. To the best of our knowledge,
our method is the first that treats the problem in the case
where the human requests the handshake. This case is harder
from a control perspective, because it requires coordination
with the human hand, the robot needs to produce natural
looking motions and it still involves physical contact as in
the previous case. The control of robotic arm movement is
investigated in [8], [9], but these papers do not control hu-
manoid hands and do not observe complex contact dynamics.
Furthermore, we investigate the possibility of performing
different hand interactions, such as hand claps or finger
touches, which are relatively under-researched.

B. Control of Dexterous Humanoid Hands

Dexterous humanoid hands are a highly complex mechan-
ical systems [15]. Due to their high complexity, the control
problem is shown to be very challenging [2], [3]. Most
approaches therefore use trajectory optimization to provide a
controller [3], [16], [17]. These approaches require a precise
model of the system, which makes them hard to transfer to
real robots. Leveraging real robot data for model learning
was proposed in [18], but the method is limited to slow in-
hand manipulation of a pole. Contrary, model-free DRL does
not require a model of the robot dynamics, i.e., all infor-
mation is obtained through multiple episodes of trial-and-
error. The only input to the algorithm is a reward function.
Recently, model-free DRL has been applied to the control
problem of humanoid hands [2], achieving impressive results
in a simulated environment. Furthermore, [4] demonstrates
the possibility of transferring a policy trained in simulation
to the real Shadow Dexterous Hand.

For non-linear control tasks, model-free DRL algorithms
have shown impressive performance [19], [20], [21] on the

OpenAI gym benchmark problems [13]. Furthermore, when
applied to low degree of freedom robotic manipulators (7-10
DoF), like robotic hands with grippers, model-free DRL has
been leveraged successfully [22], [14], [23]. However, the
problem becomes more challenging when DRL is applied
to systems with higher DoF. A hand control problem [2] or
natural movement character control problem [10] deal with
such systems. In [10], the authors carefully design and adjust
the weights of the reward to achieve the desired performance.
To improve convergence properties, the authors use two
training techniques: setting the initial state on the demon-
stration trajectory and early stopping. Human demonstration
can be used to accelerate the convergence rate [2]. In [2],
a human operator provides demonstrations via teleoperation,
which are used to initialize the policy. Alternatively, IRL
methods [24], [25], [26] can learn the reward function from
demonstration data. However, they require running the RL
algorithm in the inner loop of an iterative method, which is
not feasible with DRL algorithms. To overcome this issue,
IRL is posed as an adversarial imitation problem [12], [11],
but these methods are prone to instability.

Our method is inspired by previous DRL approaches, but
our task requires significant changes of existing methods.
In [2], the demonstrations are provided by teleoperating a
simulated robot hand, operating in isolation. For our case, it
is impractical to collect demonstrations this way because it
requires interactions between two humans. Thus, we capture
real interactions using a motion capture system. Our method
is more similar to [10], which is not designed for humanoid
hands. In [10], the authors use motion capture data directly
in the reward function formulation. Contrary, we extract the
final pose parameters from data, while we similarly use
motion capture data to produce natural looking motions.
Additionally, we add contact patterns as an objective to the
reward function, and provide a different training method.

III. PRELIMINARIES

A. Deep Reinforcement Learning

Our control problem can be formalized using Markov
Decision Processes (MDP), defined as a tuple M =
{S,A,R, T , ρ0, γ}. We describe an environment with a set
of states S, a set of actions A, a reward function R =
r(st, at), transition dynamics T = p(st+1|st, at), an initial
state distribution ρ0 = p(s1) and a discount rate γ ∈ [0, 1],
where st ∈ S and at ∈ A. Model-free RL does not require
knowledge of transition dynamics and requires only sampling
from the transition dynamics probability distribution. We
define the return Rt as a discounted sum of future rewards:

Rt =

T∑
i=t

γi−tr(si, ai). (1)

The controller is defined as a control policy π, which maps
states to actions π : S → A. The goal of the reinforcement
learning algorithm is to learn a policy π which maximizes
the expected return from the start distribution:

J = EM [R1] (2)

Fig. 2. Agent arm with the Shadow Dexterous Hand. The system
has 28 DoF. The arm, shown in blue in the left figure, has 4 Dof. The
hand has 24 Dof, depicted as yellow cylinders in the right figure,
and 20 actuators. Contact sensors are marked in purple (right).

We define the action-value or Q-function, which describes
the expected return under a policy π when taking action at
from state st, also called state-action pair, as follows:

Q(st, at) = EM [Rt|st, at] . (3)

To solve the given problem, we define the Q-function
and policy as neural network function approximators
parametrized with θQ and θπ . This is known as an actor-
critic type of RL algorithm, since we learn both an actor
function, i.e., the policy, and a critic function, i.e., the Q-
function. More specifically, we use the DDPG algorithm [19]
to compute the gradients for updating the neural network
parameters. To update θQ, we minimize the loss:

L(θQ) = EM,at

[(
Q(st, at; θ

Q)− yt
)2]

(4)

yt = r(st, at) + γQ(st+1, at+1; θQ) (5)

To update the actor parameters θπ , we compute the gradients:

∇θπJ = EM
[
∇θπQ(st, at; θ

Q)|st, at = π(st; θ
π)
]
, (6)

which are applied to the actor neural network. For both
networks we use three fully connected layers with 256
neurons and ReLu activation functions.

To ensure convergence of the policy, we apply all tech-
niques from the DDPG paper to stabilize convergence prop-
erties. This includes a replay buffer, batch normalization and
target networks. DDPG is an off-policy algorithm, thus we
define the exploration policy as:

at = π(st) +N , (7)

where N is a sample from zero mean Normal distribution.
More implementation details can be found in [19].

B. Simulation Environment

Our simulation environment consist of two robots: the
agent, controlled by the policy, and the target hand. The
agent consists of a 4 DoF robotic arm and the Shadow
Dexterous Hand with 24 DoF. The Shadow Dexterous Hand
is controlled by 20 actuators (cf. Fig. 2). We use the same
hand model as stand-in for a human hand for convenience,
since this model is easy to pose in different configurations.
However, this model can be replaced with a human hand
model, which should not influence the results of our experi-
ments since the hand is not actuated, as usually assumed for

a hand requesting an interaction [8], [9]. The robot models
are taken from the OpenAI gym framework [13].

The input to the control policy are joint angles, joint
velocities and contact sensor readings (cf. Fig. 2) of the agent
hand. Additional inputs are the positions of the target hand
links and the origin of each rigid body on the hand. The
policy outputs are control signals that actuate the agent’s arm
and hand. Control signals are setpoints for the joint angles
scaled in the range from −1.0 to 1.0.

IV. METHOD

Our method is able to learn control policies of hand inter-
actions using motion capture data of human demonstrations.
We assume the following setting: the first participant requests
the interaction while the second is executing the interaction
sequence. In the example of a handshake, the first participant
stretches out the hand to request the handshake, while the
other responds by grabbing the hand. The robot learns to
perform the behavior of the second participant. The goal
is to produce the desired interaction and motions perceived
as natural. We propose a single reward function that can
be applied to various hand interactions. The parameters of
the reward function are extracted directly from the motion
capture dataset using Alg. 1. The policy is trained via a
DDPG based training method, as explained in Sec. IV-B.

A. Reward Function

Our proposed reward function consists of two terms:

r(st, at) = rF (st, at) + rI(st, at), (8)

where rF (st, at) is the final state reward, which is used
to reward the correct end configuration, and the imitation
state reward rI(st, at), which provides trajectory guidance
to make the interactions look more natural. The final state
reward itself consists of four terms:

rF (st, at) = rp(st) + rα(st) + rc(st) + ra(at), (9)

where rp(st) is a position reward, rα(st) is an angle re-
ward, rc(st) is a contact reward, and ra(at) penalizes high
action inputs. Experimentally, we determined that the most
important position features are the fingertip positions of the
agent hand (total number Nf = 5). Regarding the angles, we
use all joint angles of the robot hand to compute the angle
reward (total number Nα = 24). Position and angle rewards
are defined as a negative l2 norm of position features and
angle errors:

rp(st) = −
Nf∑
i=1

ωip||pig − pirt|| (10)

rα(st) = −
Nα∑
i=1

ωiα||αig − αirt||. (11)

The vector pig is the goal position of each position feature and
pirt is the current position of the respective feature. Similarly,
αig is the goal joint angle and αirt the current joint angle on
the robot hand. The weights ωip, ωiα determine the importance

of the specific goal, which we define via algorithm described
in Sec. IV-A.1. When using only position and angle rewards,
the robot hand only roughly reaches the desired end configu-
ration (cf. Fig 4, Baseline 2). Our task requires accurate hand
positioning, which is hard to achieve in tasks that involve
contacts. We achieve the desired hand position by adding
a contact reward rc(st), which forces the desired contact
profile. For more details about the influence of the reward
terms we refer to Sec. V-A. Additionally, a control input
reward is added to prevent high control signals. Contact and
input rewards are defined as:

rc(st) =

Nc∑
i=1

ωic1
i
ct , (12)

ra(at) = −
Na∑
i=1

ωia||ai||2 , (13)

where the indicator function 1ict outputs 1 in case the contact
sensor is active and 0 otherwise. The weight ωic determines
the importance of each contact sensor. The system has Nc =
15 contact sensors. ai is the control input signal for each
actuator and ωia is the respective weight. The system has
Na = 24 control inputs.

The imitation reward consist of two further terms:

rI(st, at) = rpI(st) + rαI(st). (14)

The difference compared to the final state reward is that the
goal position pigt and goal angles αigt depend on the timestep:

rpI(st) = −KpI

Nf∑
i=1

ωip||pigt − pir|| , (15)

rαI(st) = −KαI

Nα∑
i=1

ωiα||αigt − αir||. (16)

These rewards are scaled with the weights KpI and KαI .
The final state reward function is often enough to complete

the interaction, i.e., to reach the final pose. However, the most
direct trajectory often does not look natural (cf. Fig. 6). We
overcome this issue by adding an imitation reward. As shown
in Sec. V-B, imitation reward significantly improves that the
hand motion is perceived as natural. However, when the
starting hand pose is far away from poses in demonstration
examples, the policy may produce non-smooth motions. We
evaluate these examples also in Sec. V-B.

1) Reward function parameters: To define the terms of
the reward function, we use a motion capture dataset D =
{(pit, p

j
t , α

i
t, α

j
t)}Tt=1 of an interaction sequence. The dataset

provides positions of rigid bodies pit, p
j
t and joint angles

αit, α
j
t of two human hand models at timestep t: the target

hand, denoted with superscript j, which requests the interac-
tion and the actor hand, denoted with superscript i, which the
robot imitates. From D, we can calculate distances between
the rigid bodies dijt and the relative position calculated in
the coordinate frame of the target hand body ∆pijt . We use
fingertip positions on both hands, plus the palm position on
the target hand. For the joint angles, we use all joints from the

human data that have a corresponding joint on the robot hand.
Based on the minimum distance, we set the reference frame
jmin and reference timestep tmin, as shown in Alg. 1. Using
these references, we compute the goal positions and goal
angles. The position goals are defined in a goal centric way,
which enables us to calculate them for a randomly positioned
hand in the simulation pjs, as shown in line 5 of Alg. 1, where
Rjs is the rotation matrix of the target hand rigid body with
index j.

Algorithm 1 Reward Parameters

1: Input: D, dijt ,∆p
ij
t

2: tmin ← arg min dijt , jmin ← arg min dijt
3: pjmin

s ← position of a jmin link in simulation
4: Rjmin

s ← rotation matrix of a jmin link in simulation
5: pig ← pjmin

s +Rjmin
s ∆pijmin

tmin
, αig ← αitmin

6: pigt ← pjmin
s +Rjmin

s ∆pijmin

t , αigt ← αit
7: return pig, α

i
g, {αigt|t = 1..tmin}, {pigt|t = 1..tmin}

Position weights are calculated using the equation:

ωip = Kp
dmin

dijmin

tmin

. (17)

The angle and control weights all have the same value
ωiα = Kα, ω

i
a = Ka. We set the contact weights ωic to

Kc for all sensors that should be in contact. This can be
done by asking participants where they feel the pressure
during interactions. Alternatively, one could use the method
from [5], which simply applies color to the target hand and
measures contact area from paint marks.

To train the policy, we need to set just six weights in
the reward function (Kp,Kα,Kc,Ka,KpI ,KαI). In all our
experiments, Ka is set to 1, while Kc is roughly set to No

5 ,
where No is the number of sensors that should be in contact.

B. Training

To train the policy, we first need to position the target
hand. For a single training episode, the target hand stays
fixed. Although we train the policy with a static hand, we
experimentally show that our policy generalizes to moving
hands (cf. V-C). The joint angles of the target hand are
set according to the joints of the human target hand at a
timestep which occurs prior to the interaction timestep tmin.
This ensures that the target hand is not closed, thus allowing
the robot to interact. Our reward function is defined in a
goal centric way. This enables randomization of the target
hand position, performed at the beginning of each episode.
To calculate the reward function parameters, we pick an
interaction sequence uniformly at random.

We randomize the robot hand position additionally to tar-
get hand randomization. For imitation reward to be effective,
the robot hand should be positioned in the same configuration
as the human hand at the start of the imitation trajectory.
Thus, we position the robot wrist to the position of the human
wrist at timestep ts, augmented with random Gaussian noise.
The timestep ts is selected uniformly at random from a

Fig. 3. Participants wear 5 active markers on the fingertips and 6
passive markers on the palm and forearm of the right hand.

set {tk|k = 1..(tmin − toff)}. We use a small offset toff

because hands can collide in the last part of the trajectory.
If this position is not reachable, we start from the closest
reachable position. Contrary to [10], we cannot position the
agent exactly in the human pose because of the configuration
differences of the human and robot arms. Furthermore, our
task is driven by a goal pose, which means that starting only
from demonstration trajectories, as in [10], will result in poor
generalization. After each Ne steps, we update the network
using the DRL algorithm described in Sec. III-A.

C. Data Collection

To collect data, we use the OptiTrack motion capture
system. Each participant is equipped with markers as shown
in Fig. 3. We only track the right hand of each participant.
Hand tracking is prone to marker mislabeling, with fingertip
markers being most problematic. We use active markers,
which can be uniquely identified by their blinking pattern,
on the fingertips. The OptriTrack software fits a model of
the human hand to the markers, providing the position of
each link and joint angle of the human hand. For each
interaction, we recorded five demonstrations. We will release
the dataset and simulation environment for further research
(https://ait.ethz.ch/projects/2019/DRL-handshake/).

V. RESULTS

We conducted experiments in simulation to evaluate our
method. We extensively test our policy on three different
hand interactions: handshake, hand clap, and E.T. greeting
(e.g. index finger touching), see Fig. 4. These three in-
teractions are diverse: the handshake requires grasping of
the target hand in a specific way, the hand clap has a
characteristic motion prior to contact, while the E.T. greeting
requires precise positioning of the index finger.

A. Ablation Study on Reward Function

In a first experiment, we intend to show the influence of the
different parts of our reward function on the resulting control
policy. For this, we do an ablation study on our reward
function. We compare the full final state reward rF (st, at)
with two baselines. Baseline 1 uses only the relative position
of the palm instead of the fingertips as a goal position feature,
while keeping angle, contact and input reward the same. In
Baseline 2, we remove the contact reward from the reward
function. Furthermore, we examine the influence of adding
the imitation reward to the final state reward.

Fig. 4. Final poses of the hands for different hand interactions.

Our final state reward function shows overall better per-
formance than both baselines (c.f. Fig. 5). The influence of
the position reward can be seen by comparing Baseline 2
to Baseline 1 for handshake and E.T. interactions. Although
both baselines have low success rates, Baseline 2 results in
final configurations closer to the desired ones as shown in
Fig. 4. Adding contact reward to Baseline 2, i.e. using our
reward function, removes these errors. The importance of
the contact reward can be also seen in Fig. 5 in case of the
hand clap. Since precise positioning is less important here,
Baseline 1 achieves high success rate because of the contact
reward. After adding the imitation reward, we observe that
the success rates do not significantly change.

B. Evaluation of Imitation Training

To qualitatively assess the impact of the imitation reward,
we conduct a large-scale user study (N = 116). We present
11 video sequences of policy outputs with and without
imitation reward side-by-side . We keep the initial conditions
for each sequence-pair the same and randomly assign videos
to the left or right. The participants state which video is
perceived as more natural on a forced alternative choice 5-
point scale. The five responses are: ”Left sequence looks
much more natural”, ”Left sequence looks more natural”,
”Both the same”, ”Right sequence looks more natural”,
”Right sequence looks much more natural”.

Assuming equidistant intervals, we mapped user responses
onto a scale from -2 to 2, where positive values mean that
the user prefers the policy generated with imitation reward
and vice versa. The imitation policy can generate non-smooth
motions when the starting pose is far away from the recorded
human trajectory. To evaluate these examples, we compare
two sequences including obvious non-smooth motions.

Generally speaking, participants favor policies generated
with imitation reward (c.f. Table I). For hand claps, the
differences are easy to spot (see Fig. 6). Hence, human
raters strongly prefer the imitation based policy. For the
handshake, the differences are harder to see, resulting in
significant amount of participants selecting ”Both the same”

https://ait.ethz.ch/projects/2019/DRL-handshake/

Fig. 5. Baseline comparison. We measure the success rate of the policy every five epochs. Success is estimated from the contact profile
on the hand. We show average results from 5 random seeds with the standard error indicated by the shaded area.

Fig. 6. Imitation reward. The policy trained with imitation reward
produces a characteristic motion prior to the hand clap.

TABLE I
USER STUDY RESULTS OF PEOPLE VOTING ON 5 POINT SCALE FROM -2

(NO IMITATION) TO 2 (IMITATION) LOOKING MUCH MORE NATURAL

Score −2 −1 0 1 2 mean
Handshake 4.9% 26.2% 15.2% 45.1% 8.6% 0.26
Hand clap 0.0% 2.3% 3.4% 41.9% 52.3% 1.44

E.T. 3.4% 17.2% 54.3% 19.0% 6.0% 0.07
Handshake non-smooth 23.3% 43.1% 12.9% 15.5% 5.1% −0.64
Hand clap non-smooth 0.8% 7.0% 12.9% 49.1% 30.2% 1.0

(15.2%). However, the majority of the participants still
prefer the imitation based policy. For the E.T. interactions,
there are no observable differences. Thus, the majority of
participants answered with ”Both the same” (54.3%). For
non-smooth handshakes, the results indicate that participants
prefer smooth motions. However, for non-smooth hand claps,
participants prefer imitation features, although the mean
score is lower than in the case of smooth hand claps.

C. Policy Evaluations

To evaluate the robustness of policies created with our
method, we test the reaction to perturbations in orientation
and velocity of the target hand. During training, we only
randomize the position of the target hand, while the orien-
tation stays the same. We position the target hand in the
reachable workspace of the agent and measure the success
rate, while changing the yaw and pitch angles of the target
hand. In a realistic scenario, the human hand will not be
perfectly still. Furthermore, the human can react when the
contact is imminent by closing the hand or approaching the
agent hand. Thus, we conduct a second experiment where
the target hand is moving at constant speed, changing the
direction at random every half second (see Fig. 7).

The experiments indicate that our method is robust to
perturbations in orientation and velocity of the target hand.
This shows that our reward function generates policies that
generalize well to unseen scenarios. We also tested our policy
with changing configurations of the target hand, i.e., closing
fingers in a handshake policy, and did not observe any major
changes. Demonstrations of these experiments can be seen
in the accompanying video (https://youtu.be/ZSgEqyltaN4).

Fig. 7. Robustness experiments. Top: The average success rate for
different target hand angles (the color bar shows the success rate).
Down: The average success rate for different hand velocities.

VI. DISCUSSION AND CONCLUSION

Control of dexterous humanoid hands is a challenging
problem, especially when it involves contact dynamics. In
this paper, we demonstrate that a single parametrized reward
function can be used for different hand interactions. To
define parameters of the reward function, we use a simple
algorithm to extract parameters from motion capture data. We
show that policies generated with our method produce more
natural looking trajectories, and generalize well to different
orientations and velocities of the target hand.

Our results are shown only in simulation and with a
static target hand as an initial step towards natural human-
robot hand interactions. To achieve this level of performance
on a real robot, transfer learning methods, such as the
one suggested in [4], could be applied. We show that our
policy reacts well to small velocity disturbances. However,
humans can perform synchronous hand motions prior to
interaction. This problem should be investigated in more
detail. Our method only considers contacts, but we never
investigated forces acting on the hand. [5] emphasizes the
importance of forces applied during handshakes. According
to our measurements, forces applied to the target hand are
in the range of a normal handshake. Compliant behavior is
important for hand interactions [7]. However, evaluation of
the robot hand compliance is outside the scope of our work.

This paper shows how natural human-robot hand interac-
tion can be learned using DRL. To the best of our knowledge,
this is the first paper that uses a dexterous humanoid hand for
human-robot hand interactions. This opens up the possibility
to achieve natural hand interactions on a real humanoid robot.

https://youtu.be/ZSgEqyltaN4

REFERENCES

[1] “Shadow dexterous hand,” https://www.shadowrobot.com/products/
dexterous-hand/, accessed: 2018-08-21.

[2] A. Rajeswaran, V. Kumar, A. Gupta, J. Schulman, E. Todorov,
and S. Levine, “Learning complex dexterous manipulation with
deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[3] I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant opti-
mization for hand manipulation,” in Proceedings of the ACM SIG-
GRAPH/Eurographics symposium on computer animation. Euro-
graphics Association, 2012, pp. 137–144.

[4] M. Andrychowicz, B. Baker, M. Chociej, R. Jzefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider,
S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba, “Learning
dexterous in-hand manipulation,” arXiv preprint arXiv:1808.00177,
2018.

[5] E. Knoop, M. Bächer, V. Wall, R. Deimel, O. Brock, and P. Beardsley,
“Handshakiness: Benchmarking for human-robot hand interactions,” in
Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on. IEEE, 2017, pp. 4982–4989.

[6] P.-H. Orefice, M. Ammi, M. Hafez, and A. Tapus, “Let’s handshake
and i’ll know who you are: Gender and personality discrimina-
tion in human-human and human-robot handshaking interaction,” in
Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International
Conference on. IEEE, 2016, pp. 958–965.

[7] M. Arns, T. Laliberté, and C. Gosselin, “Design, control and exper-
imental validation of a haptic robotic hand performing human-robot
handshake with human-like agility,” in Intelligent Robots and Systems
(IROS), 2017 IEEE/RSJ International Conference on. IEEE, 2017,
pp. 4626–4633.

[8] T. Shu, X. Gao, M. S. Ryoo, and S.-C. Zhu, “Learning social
affordance grammar from videos: Transferring human interactions to
human-robot interactions,” arXiv preprint arXiv:1703.00503, 2017.

[9] M. Jindai, S. Ota, Y. Ikemoto, and T. Sasaki, “Handshake request
motion model with an approaching human for a handshake robot
system,” in Cybernetics and Intelligent Systems (CIS) and IEEE
Conference on Robotics, Automation and Mechatronics (RAM), 2015
IEEE 7th International Conference on. IEEE, 2015, pp. 265–270.

[10] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based char-
acter skills,” arXiv preprint arXiv:1804.02717, 2018.

[11] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in Neural Information Processing Systems, 2016, pp. 4565–
4573.

[12] J. Merel, Y. Tassa, S. Srinivasan, J. Lemmon, Z. Wang, G. Wayne,
and N. Heess, “Learning human behaviors from motion capture by
adversarial imitation,” arXiv preprint arXiv:1707.02201, 2017.

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016. [Online]. Available: http://arxiv.org/abs/1606.01540

[14] M. Vecerı́k, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. A. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” CoRR, abs/1707.08817, 2017.

[15] V. Kumar, Z. Xu, and E. Todorov, “Fast, strong and compliant
pneumatic actuation for dexterous tendon-driven hands,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on.
IEEE, 2013, pp. 1512–1519.

[16] Y. Bai and C. K. Liu, “Dexterous manipulation using both palm and
fingers,” in Robotics and Automation (ICRA), 2014 IEEE International
Conference on. IEEE, 2014, pp. 1560–1565.

[17] V. Kumar, Y. Tassa, T. Erez, and E. Todorov, “Real-time behaviour
synthesis for dynamic hand-manipulation,” in Robotics and Automa-
tion (ICRA), 2014 IEEE International Conference on. IEEE, 2014,
pp. 6808–6815.

[18] V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned
local models: Application to dexterous manipulation,” in Robotics and
Automation (ICRA), 2016 IEEE International Conference on. IEEE,
2016, pp. 378–383.

[19] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[20] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning, 2015, pp. 1889–1897.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[22] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy up-
dates,” in Robotics and Automation (ICRA), 2017 IEEE International
Conference on. IEEE, 2017, pp. 3389–3396.

[23] A. A. Rusu, M. Večerı́k, T. Rothörl, N. Heess, R. Pascanu, and
R. Hadsell, “Sim-to-real robot learning from pixels with progressive
nets,” in Conference on Robot Learning, 2017, pp. 262–270.

[24] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[25] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in Aaai, 2008, pp. 1433–1438.

[26] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep
inverse reinforcement learning,” arXiv preprint arXiv:1507.04888,
2015.

https://www.shadowrobot.com/products/ dexterous-hand/
https://www.shadowrobot.com/products/ dexterous-hand/
http://arxiv.org/abs/1606.01540

	Introduction
	Related Work
	Human Hand Interaction
	Control of Dexterous Humanoid Hands

	Preliminaries
	Deep Reinforcement Learning
	Simulation Environment

	Method
	Reward Function
	Reward function parameters

	Training
	Data Collection

	Results
	Ablation Study on Reward Function
	Evaluation of Imitation Training
	Policy Evaluations

	Discussion and Conclusion
	References

